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Propagation Without Wave Equation
Toward an Urban Area Model

Giorgio Franceschettiellow, IEEE Stefano Marano, and Francesco Palmieri

Abstract—Propagation in random media is a topic of great propagation in random media. A good comprehensive refer-
interest, whose application fields include, among others, the ence book is [5]. In particular, in théne-of-sight situation
so-called last mile problem as well as the modeling of densethe transmitters send a signal trough a random medium and
urban area radio communication channels. In this paper, a . . . _
simple scenario for this issue is considered, with an optical-ray the op]eCt'Ve of the_ modgl Is to c_haracter_lzg the stau;n_cal
propagation across a medium of disordered lossless Scattererslbehavm)r Of the rece|Ved S|gna|. QUIte SOphIStlcated StatIStlcal
The propagation medium behaves like a percolating lattice and characterizations of such a scenario are available in the liter-
the goal is to characterize statistically the propagation depth ature, but unfortunately, a little thought shows that all these
in the medium as a function of the densityq of scatterers and a5 are not applicable to our problem. In fact, the scatterers

of #—the ray incidence angle. To the best of our knowledge, . o
this approach is totally new. The problem is mathematically are assumed to be either small compared to the (incident)

formulated as a random walk and the solutions are based on WavelengthA [6], i.e.,

the theory of the martingale random processes. The obtained ord

(approximate) analytical formulas have been validated by means “ama <1 (1)

of numerical simulations, demonstrating the applicability of the A

proposed model for a wide range of the global parameterg and . . . .

§. We believe that our results may constitute a promising firststep (¢ 18 @ typical dimension of the scatterers), or large, but
toward the solution of more complicated propagation models and tenuous[7],

a wide class of communication problems. ord

Index Terms—Last mile problem, propagation in random me- DY > 1, & —1<1 (2)
dia, urban area communications.
with ¢, being the relative dielectric constant of the scatterers.

These assumptions are in fact inappropriate for characterizing
urban areas because our scatterers are buildings, walls, trees,
etc., larger (and usually exceedingly larger) than the incident
URING the last few years the problem of setting efﬁCiergigna| wavelength and certainly not tenuous.
fast communication links in dense populated areas hasas the wave approachseems to be inappropriate, ray
attracted increasing interest. Use of radio waves as a cond@proachappears to be an attractive candidate, particularly in
nient alternative to most traditional cable or fiber connectioRgew of the large dimensions of the scatterers compared to the
has been suggested [1]-[4]. This solution is usually referr@ghvelength. In the related existing literature it is usually as-
to asthe last mile approach, whereas a terminal area afumed that the communication channel can be represented by a
limited extension is served by means of radio links, insteafultipathmodel [8]. Typically, the statistical characterization
of wires. This area may be a limited section of a city, af the multipath component parameters has been performed
few buildings, or even a single building. Models, algorithmpy fitting data between somsuitable probability distribution
and mathematical tools for prediction of the electromagnetigmily and experimental measurements [9]-[13]. It is also
signal characteristics in this situation is becoming of CritiC@ertaimy possible to conceiviay launchingsimulations for
importance. any given scenario, but this may pose a formidabietracing
The natural starting point to approach the problem angroblem even for modern computers [14], [15]. Moreover, it is
lytically may appear to be the huge existing literature abowfidely accepted that general conclusions and guidelines cannot
be easily reached only on the basis of numerical simulations,
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Fig. 1. Example of ray propagation in a square lattice.

Fig. 2. Computer generated lattices with occupancy probabjlite 1 — p.

lattices are examples of three-dimensional arrangements [1#}gre exists a certain critical value for which a large cluster
Each site can be either occupied, or empty. The arrangemertfisempty sites connecting the opposite sides of the lattice
referred to as aercolating latticeand has been widely studied(top side and bottom side of the lattices in Fig. 2), appears
and used to model physical phenomena like forest fires, sfam the first time. This critical value is namegercolating
diffusions in ferromagnets, gelation of polymers, and othénresholdp. and it has been estimated to pg ~ 0.59275
kinds of diffusion in random media [16]. for the square geometry [16]. Near the percolating threshold
Let us assume that the status (occupied or empty) of a ddlé characteristics of thelattice change qualitatively, namely
is independent of the status of all other cells in the lattice (s#ee structure exhibits phase transition
next section) and assume that the occupancy probability iSOur approach was originally inspired by the percolation
q =1 — p. Given a very large lattice randomly occupied witltheory, but it focuses on a rather different problem. In fact,
probability ¢, percolation theory deals (among other topicsye are interested imay propagationinstead of diffusion.
with the quantitative analysis of groups of neighboring emptyevertheless, some aspects of the theory are of interest to
sites €lustery: form, average size, number, etc. For modesis. For instance, a result of percolation theory that could
values ofp (say,p near zero) the average dimension of clustetarn out to be useful is the evaluation of the probability that
is small, while forp near unity the lattice looks like a singletwo sites at a certain distance apart do not belong to the
cluster with sporadic holes. Ferincreasing from zero to one, same cluster. The absence of a connection means that neither
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diffusion nor ray propagation between the two sites is allowedihe outline of the numerical procedure used to check the
For this reason, in this work we limit our attention to thenalytical approximations is deferred to Appendix A, while
range of site occupancy such that the cell connection existsme analytical details are postponed to Appendix B.

with sufficiently large probability, i.ep € (p.,1). Therefore,

we consider the medium for values pfalready above the Il. THE PROPAGATION MODEL

hase transition betwediffusion (propagation) preventezhd . . .
P (propag )P Let us consider a regular lattice of square cells as depicted

diffusion (propagation) allowed I . . . .
Consider now a monochromatic plane wave (in the Fig."f Fig. 1. With no loss of generality, the side of such cells is

it is just a single ray) impinging at angle on a half-space assumed of unitary length. Eaph gell_can be.either occupied or
filled by the scatterers. With reference to Fig. 1, we follov?mpty'.In the former case, an impinging ray Is totally ref_lected
the path of a ray that undergoes successive reflectionsagfOrdlng to the geometrical optics reflection laws; in the

levels ro. 71,75, - -, coincident with the rows of the lattice. latter, the ray freely progresses. The scatterers are impenetrable

We address (and answer) the following question. “What is the that the medlu_m IS Ioss_less. Moreover, diffractions at the
o(l_:ges of the lattice are ignored. We assume further that

robability that the ray reaches (and eventually passes ﬁ . S > .
E)row) Ievgl 2 y ( yp ) e lattice has infinite horizontal extension; therefore, our
. . . o . ..results will be (statistically) invariant with respect to the
Other interesting questions are: “what is the probability” ™. 3 .
. o “ orizontal coordinate. Also, the number of levels (in the
that level k is reached at thé&th reflection?” and “what : ) . L
. o . ... vertical dimension) can be thought as infinite for our purposes.
is the probability thatR? rays intercept at the same site i - :
o . o our (computer generated) examples of (limited portion of)
the lattice?” Answering to the former question is important : : .
. : : such percolating lattices, with valuesp& {0.6,0.7,0.8,0.9}
when reflection losses needed to be included, while a solution . LY
. ... are depicted in Fig. 2.
for the latter question would allow a second-order statistica . . . .
The aim of our work is to answer the question stated in the

characterization of the transmitted field. We concentrate here . . . . :
evious section, for lattices characterized by a given value

. : : r
on the propagation depth question leaving the other probleg}sp and for impinging waves with a prescribed incidence
tovz\i/efutfz:jirztt:?g that the scenario of Fig. 1 is an oversi angle 6. Let us model the plane wave impinging on the
- . . 9. . I?qttice in terms of parallel rays and consider a ray entering
plified version of the real propagation problem. In spite Q[ﬁe oropagation medium with ang® The ray reaches the

this, its analytical solution constitutes to our knowledge . .
L : . ow) levels{r,,n > 0} after successive reflections over the
first rigorous result, totally new with respect to convention : " ,

%ccup|ed) sites (see Fig. 1). We have

propagation studies. Conclusions are by no means trivial a

we believe, of real practical importance. Determination of n
a propagation depth(as the answer to the stated question), Tn =70+ Z Ems n=12--- (3)
which can be generalized up to the third dimension, may be m=1

relevant to estimation of the last mile actual size, giving wherein rq is the initially reached level (at which the first
criterion for choosing electromagnetic compatible neighboringflection takes place) and the sequence
cell frequencies.

If the event that a site is empty or occupied is totally Tn =Tn = Tn-1, n=12-- (4)
unrelated to neighboring site states, we have a complet%yt
random distribution of occupancies. Conversely, any statisticaje
dependence among cells would mean that the scatterers &
structurally organized. The limit case would be that of a fully
ordered distribution of scatterers. Very structured lattices may , n
be more appropriate models for modern cities that typically Tn =Tn =70= Z Lm, n=12---. (5)
have a very regular distribution of buildings and streets. m=1
A (full) random model instead may fit better central parts For a given lattice and prescribed incidence angland
of old towns (as common in Europe), when distribution ofntry position, the single ray path can be completely deter-
constructions proceeded with marginal rules over the years.niined by the rules of geometrical optics. However, we are
the following, we refer to this last model and assume that tlreterested in the mean behavior of the propagation for a given
generic site is occupied with probabilifyindependently from value of the lattice density — p, hence, we associate to
all others sites. each randomly chosen lattice and ray entry point a different

This paper is organized as follows. In Section I, the modetember function of thestochastic procesqr,,n > 0}.
of the propagation channel is introduced and the lattice ch&¥ith this model we obtain a probabilistic characterization
acteristics are briefly discussed. Sections Ill and IV deaf {r,,n > 0} averaged over the ensemble of possiple
with the statistical characterization of the random propagatidattice realizations and possible entry points. In general, the
process. In Section V, we first explore the exact numericalndom variables (RV's),, are statistically dependent and
solution, and hence we derive analytical approximate formulasch a dependence is a function of the problem parameters.
for the propagation depth. Section VI provides compariséfo make the problem tractable, however, we modgl as
between the derived formulas and numerical simulationadependent RV’s and, therefore, the sequence (3) has the
Final comments and conclusions are drawn in Section VBtructure of a classical random walk. We see in the following

he level change after reflection For reasons that will be
ar later, let us define alsoshifted versionsay{r,,,n > 1}
the sequencér,,n > 0}
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that for certain values of the problem parameteendé this 04
assumption is quite realistic, even though it may fail in other
. . . . . & (0] @ Qa
cases. These differences are highlighted in drawing comments % 5 10 i 20 25 30
on the simulation results. '
Let us divide the problem at hand in two parts. Fig. 4. Theoretical (line) and numerical (circles) valuesif (i) versusi,

! . L with §° = 45°.
1) A half-space filled with scatterers is hit by a ray that

undergoes a first reflection at lewgl The first objective ) ] ] )
is to determine the statistics of (see Figs. 1 and 3). A reflection at levek takes place if the first cell hit by the

2) Starting from levelro, characterize the propagation of@y proceedingnto th_e levels is occupied or if that cell is_
subsequent reflections. In other words, givegifor every empty and the ray hits the next one, that must be occupied,
depth i > 0, determine the probability that the raya”d so on. Therefore, since the ray within the levedn cross

intercepts that level before possibly escaping from levél mosttané cells

0. Pr{a reflection takes place at leviegiven that
Following this framework in Sections Ill and 1V, we derive levels up toi — 1 are freely crossed

the basic tools to deal with the abovementioned two issues.
tan @ 1— 1+tané

¢ Y = ——=1-p. (9
=0

[1l. DISTRIBUTION OF 77 1-p

We derive hereafter the probability mass function (PMF) of The final result is then
ro, Pry(4) = Pr{ro = ¢} with ¢ = 0,1,2,--.. To this aim

and with reference to Fig. 3, let us consider a ray entering P, ()= {q’ i1 f_ 8’ (10)
the lattice with incidence angl It is clear that the searched Ppe e, >0
probability is equal tog for ¢ = 0 Note the role played by the effective probability of site
Py(0) = (©) occupancyy. > q that combines the effects of the incidence
ro\Y) =4 angle & and of the probability of occupancy. It is worth

For¢ > 1 such a probability can be computed as the produdoting also that the random variablg can be thought as the
) ) product of two independent RV'’s, say = rg1792. The former
Py, (1) = Pr{levels up to < — 1 are freely crossed follows a geometric distribution with rangél, 2, --, o0}
x Pr{a reflection takes place at levieyiven and parameter.,, i.e., Pr{ro; = i} = pi~tq. with i =
that levels up ta — 1 are freely crossed 1,2,---,00. The latter is a Bernoulli RV with ranggd, 1} and
] ) parameterp, i.e., Pr{rg2 = 1} = p. The RV ro; models the
The first factor equalg raised to the number of empty cellsyiscontinity at the edge of the lattice (the ray enters the filled
crossed by the ray to reach level This number equals the i hiang with probabilitys), while ro, takes into account the
sum of crossed row and columns plus one (to have access,@hagation within the lattice, which is characterized by the
level i) that can be takénto be (i — 1)(1 + tanf) + 1 (see effective probability of site occupanay.

Fig. 3). Accordingly The analytical result of (10) has been validated by means

Pr{levels up toi — 1 are freely crossed of numerical experiments. Curves for different values of
= pli-DOHtand) 41 _ pim1 7) p and # are depicted in Figs. 4 and 5, showing excellent
i agreement between simulation and theory. Details of the
where numerical procedure are postponed in Appendix A.
pe=p*t™? and ¢.=1-p. (8)

IV. DISTRIBUTION OF SUCCESSIVE JUMPS

are defined aeffectiveprobabilities of a site to be empty or  The characterization of the stochastic process involved in
occupied, respectively. the study of the propagation depth requires computation of
1The value should be bounded to an integer, but we ignore this fact. the PMF P,. (i) of the (row) jumpz,. The analysis can be
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04 . ' ' w filled site inverts the sign of the jump, while the opposite effect
018 holds for reflection on a vertical face. For an incidence angle
O'Z,—\p»\vw 1 & we know that at every change in level, the ray hiia ¢
. ; . , vertical barriers. Therefore, we can assume that the probability
0 5 1 18 2 % of hitting a vertical face is
04 . , . . , , , tan @
o i j ) = — 16
s 450 5 1+tané ( )
g 0.2/\\\,\@\ | and that of hitting an horizontal face is
% 2 n 5 I P S TR € = 1 (17)
T 1t tané
_ Now Pr{z,, > 0} equals the probability of the evetibut
of n reflections, an even number of them has happened on
horizontal facesand z,, # 0}. In

i ° = NN i pn—i
Prte, > 00 =Y (1) 6670 ()
Fig. 5. Theoretical (line) and numerical (circles) values/®f (i) versusi, i=0 ¢
ith p = 0.8.
e =L - -a) (19)

developed by following the same lines of Section Il and it i a similar way
the topic of the present section. Pe N
With reference to Fig. 6, we can encounter three mutually Pr{z, <0} = 9 [T+ (& — &))"

exclusive situations.
. . . Therefore, Pr{z,, > 0} = «,p. and Pr{z, < 0} =
1) There is no jump because the reflection takes plage n)p where - - :

within the same (row) level (in the figure it is the case

of 7, = 73 = 8). This is easy to characterize by means o =3—3(&—-&)" (21)

of the same arguments yielding (9), givifyy, (0) = q..
2) There is a positive jump from level,_; to », =

rn—1 + ¢ (in the figure for instance; = r4 + 2), that Qe ‘ 1=20

can be described by the following: P, (i) ={ on g pe >0 (22)

(1—am)gept! i<o.

(20)

In conclusion

P, (i) = Pr{z, = i|lz, > 0} Pr{z, > 0}
_ q€p2—1 Pr{z, > 0} (11) Note that we can thlnk af,, as the product aof,,1, a geometric
RV with Pr{z,; = i} = g for ¢ = 0,1,---,00 and

where againPr{z, = i|z, > 0} has been computedz,s, an RV of Bernoulli type for whichPr{z,» = 1} =

according to the same arguments used R (i) in  «, and Pr{z,» = —1} = 1 — a,. The latter takes into

Section 1l account the possibility of both positive and negative jumps,
3) There is a negative jump from levg| ; to levelr,, (in  the former models the propagation into the lattice. Note also

the figurer, = v, — 3), giving thatlim,, .., «, = 1/2, namely the distribution tails tend to

become symmetrical with a rate of convergencergftoward

Py, (1) = qepl! ™ Priw, < 0}, (12) 1/2 depending upor®. We conclude that the distribution is
Computation of the probabilities that the jump is positiv€Nly asymptoticallysymmetric zero-mean and the RVis,
or negative is now in order. We have are only asymptotically identically distributed.
Also, in this case, analytical results have been tested by
Pr{z, > 0} + Pr{z, < 0} =1 - Pr{z, =0} means of numerical experiments, as depicted in Figs. 7 and
=1—g. = p.. (13) 8. The simulations average a sufficiently large number of

realizations and can be considered to be asymptotic estimate

By supposing that the chances of both positive and negatiygh ,, — 1/2. These results are detailed in Appendix A.
jumps are on the same footing,

Pr{z, > 0} = Pr{z, < 0} = % (14) V. EVALUATION OF THE PROPAGATION DEPTH
In this section, evaluation of the propagation depth is
we get carried out. First we explore the exact numerical solution
P, (i) = % qeplﬁil’ i # 0. (15) to the propagation model under the assumptign= rg +

¥r _1 xm With independent and identically distributed (iid)

Unfortunately, a little thought shows that the above simple,’s. Unfortunately, the exact solution requires numerical
assumption may not always be true. In fact, examination ofanipulations of the transition matrix of the model, that do
Fig. 6 clearly shows that a reflection on a horizontal face ofreot appear to lend itself to a simple analytical expression. To
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Fig. 7. Theoretical asymptotic (line) and numerical (circles) values dfig. 8. Theoretical asymptotic (line) and numerical (circles) values of
Py, (i) versusi for 6° = 45°. P, (i) versusi for p = 0.8.

more specifically understand the quantitative influence of tlsorbing state; when the rays hit such a level the process
problem parameterg and# on the propagation depth, we alsaerminates and similarly for the state (lev&l)Let us organize
develop an alternative approximate approach yielding a vethe probability of transition from stateto statej in a matrix

simple analytical solution. M whose entries are
We would emphasize that both the exact and the ap- o ) )
proximate solutions refer to the assumed model. Numerical M(i,j) = Pr{ry = jlrn—1 = 1} (23)

simulations confirm the adequacy of the model for MO \ye are away from the states zero akd the transition
incidence angleg and density parameters probabilities are described by the junfp,.’s) distribution,
e, M(i,j) = Py (lj — i), i,j = 1,2,---.k — 1. Also,

A. Exact Solution M(0,0) = M(k,k) = 1 and

The propagation depth can be investigated on the basis of 0
the classical Markov chain theory. In fact, the process of (3), M(i,0) = Z P (lj —i)
within the assumption of independent jumps and with the i e
asymptotic expression of thg,’s with «,, = 1/2 Vn, obtained P19 k1
in the previous section, is an example of a homogeneous - R ’

Markov chain. In particular, it is a random walk with two SN L
absorbingbarriers (the interested reader is referred to [17]). M k) = Z Po, (17 =)

Let us think of the lattice level8, 1,2, - - - k as the possible )
statesof a Markov chain. Consider state (level) zero as an =12 k=1
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since the ray can overshoot over the barriers. The- 1) x  conditioned ensemble average
(k + 1) transition matrix for the Markov chain is then seen in

7
the equation at the bottom of the next page. (il @n, Tnm1, - 21)
The initial state distribution of such a Markov chain is = (r, + Tpg1|Tn, Tpo1, -, 71)
P, (i) fori=0,1,2,---,k—1land X2, P, (s) fori =k = (1 |y Ty, 1)
that, organized in a vector (initial state distribution vector),
giVeS + <-Tn+l|$n7$n—17"'7xl>
=75+ (Tn41) (27)
o T
Qo= | Py (0),Pry(1), -+, Pry(k — 1)72 P.(s)| . (29 where the level jumps have been assumed statistically uncou-
’ ’ ’ i pled from each other.
_ o As (z,) = 0, Vn i.e., positive and negative jumps
If we denote Wlth Qn the state distribution vector at theare (asymptot|ca||y) equa”y ||ke|y (See Section |V) and
(n + 1)st reflection, we have (') < oo (see Appendix B), the procesg”’,n > 1}
o can be considered martingale with respect to{x,,,n > 1}
"o [ Z P”n(s)vR‘n(l)v e 7-‘D7‘n(k - 1)7 [18]’ [19]’ and
s=T00 . (g1 ns T, - -+, 21y =77, n=12,--. (28)
> P (s) For a martingale, it is easily seen thaf,) = () for all n.
s=k Consider now another random sequence, #iepped

. . rocess related tor!
(where P, (7) is the PMF ofr,,) and obviously . ? "n

T—QTM {F:mnz 1}:7)/177’/27"'77‘3\777)3’77)3\77"' (29)
1 — %0
Qg _ 0TM2 whereinN is the smallest value between andn, in Fig. 9;
_ ng IS the number of jumps undergone by the ray to reach
: : (and eventually pass) levél, whereasn, is the number of
Qr = QT M"™. (25) jumps to cross back to level zero and (_Jlisappear. Formally,
N = min{n: », > k or r, < 0}. For instance, the ray

The probability we are searching for is just the last entry ¢ the left in Fig. 9 leaves the (effective) lattice after 21

Q, whenn increases to infinity, i.e., reflections andN = min(no,n;) = no = 21, while the
ray on the right of the same figure reaches leke(and
(lim Qf) = (QOT lim M") i (26) passes it hitting levek + 1) after five reflections so that
n—oo L n—0o0 k

N = min(ng,n) = ny, = 5. In the latter instance/, = 7/, for
The limit matrixlim,, .. M" can be evaluated (numerically)n < 5, whereasg = k,7% = k—1and7g = k+1,7; = k+1,
by spectral decomposition @f. It is obvious that the process,etc. Within this formalism answering to the question stated in
having two absorbing barriers, provides asymptotically a ndfiection | means evaluating the probability{ry > k} or

vector @@,, except for the first and the last entries. elsePr{ry > k —ro} for a given value ofr. In fact, this is
the probability that the ray has reached at least dégikfore

escaping from the level zero.

It is useful to see the random wall’,,n > 1} as a

The solution provided above quite accurately reflects the, ingale because a number of very general results are
propaga_non phenomenon. However, in this s_ect|on, we alﬁ{?ailable in the literature and, in the following, we make
derive simple analytical (approximate) expressions that do r@zplicit use of some of them. To this goal, we note that if
require the computation of the limit form @ff™. This gives us + n > 1} is a martingale with respect thr,.,n > 1}, then
an easier-to-handle solution that also highlights more clear{{i)g?’n S 1'} is a martingale with respect t{)v,: n> 1'} [18]
the role of the problem parametessand 6. toch”ana, consequently =

Let us start off again from the process (5) and fix a

B. Approximate Analytical Solution

prescribed value of the RV, 0 < ry < k. Compute the (7)) =) = () (30)
r 2 0 0 0 0 0 7
De 2(]€ GeDe erz T QF,pf_Q pE_I
P2 g@pe 20 qepe - qeptT® phT?
M=1L|pP @pl  ape 20 o oqpdt opl?
PE qept ™ qeph ™ geptT? 2¢c  pe
L O 0 0 0 0 2
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level 0
level k
Fig. 9. Examples of propagating rays.
where the last equality derives fromr; = r{. If To release the conditioning oveg, ensemble expectation of
Pr{N < oo} = 1, then for sufficiently largen, 7/, = 7). last relationship with respect to distribution (10) has to be
This implies performed. This yields (after some algebra)
v — - =/ — - =/ — ./
) = Jlim )= (fim 7) =5 @D Priry 2Ky B (1) @8)

that finally yields
, that is, the searched results. It is important to stress that the
(rv) =(z1) =0 (32) distribution ofz,, does not play a role in deriving relationship
(38) (except for verifying regularity conditions for validity of

g}?r"rtr::te ;Sdsué?lzte'?:blgf azveer:)a n;e?;ﬂ,,,(g)l.) 1;:ealllgtl\el;%habng?hQZ)—see Appendix B); all that is required is the zero-mean
9 y roperty of thex,,’s. As a check for (38), note that

martingale optional stopping theorem (see Appendix B fgr

details). im ; 0
Now IlJl—’I 0 qe k (1 pe)
0= <7’5\T> = <7’9\, 7’3\’ >k — 7’0) Pr{TE\T >k TO} hI 1q k (1 5) '
p e K
+ <7,/N 7’/1\" < —7’0> PI‘{T/N < —7’0} (33)

as expected.
An improvement of the approximation of (38) can be
Xerived by exploiting the distribution (22) of the,’s. In fact

wherePr{rly < —ro} =1 —Pr{rly > k—ro}.
A first approximation (usually referred to as Wald’'s appro
imation) is to assume

(rivlry = k= ro) &k =y (34) {rivlry 2 kb —r0) ={riy_s|ry 2 k = ro)
(rvlry < —ro) = —ro. (35) + (znlrly >k —ro)
. . . %0+<$N$NZ/€—T0>
The first equation basically means that when the ray over- Pe
crosses the levet — r, it does not overcross it significantly. =k—ro+ P (39)
A similar interpretation holds for the second relationship. With '
these assumptions, (33) yields The approximation consists in substituting everywhere in the
Pr{ry > k — ro} ~ ro/k. (36) right-hand side of the first equality of the previous expres-

sion r,_; with its expectation zero. Then the evaluation of

Actually, the previous probability is conditioned om, (Z~|zx =k —7o) is performed basing upon the distribution

(namely representBr{ry > k|ro}) and, until now, we have of the z,,’s (note that t_he_ previous approximation, lacking of
considered the case 0f< 7y < k. In the general case, a little knowledge of the statistical characterizationagf's, was to

0 o fashion
) =

Pr{7‘1\r2k|7’0=i}%{i//€, O<i<k (37) g N e Pe
1, i>k (rylry < —ro) &= =70 . (40)
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Fig. 10. Probability that the propagation depth is greater thaersusk for ~ Fig. 11. Probability that the propagation depth is greater tharersusk
different values ofp and foré° = 45°. The dashed line represents Wald'sfor different values ot and forp = 0.8. The dashed line represents Wald's
approximation of (38). The solid line represents the exact solution obtainagproximation of (38). The solid line represents the exact solution obtained by
by (26) using spectral decomposition of the matkik and also (42). Circles (26), practically indistinguishable from the values obtained from (42). Circles

denotes simulated values. denotes simulated points.
This yields Naturally, the analytical approximation is not applicable for
. values ofp too close to unity or values which are too small, i.e.,
0, t=20 . .
i +pe/q near percolation threshold. = 0.59275. In fact, in a sparse
. € € . . . . . .
Pr{ry = k|ro =i} = E+2p /. 0<i:<k (41) medium the propagation looks like propagation in free-space
1, Pelde i>k and the reflections are events with probability close to zero.

Conversely, in a dense medium the large probabilityoops
(repeated reflections over the same few cells) suggests that
the propagation is practically inhibited, and the assumption of
statistically uncoupled jumps would loose validity. It should be

G k+2pe/q.
. . . . noted that these extreme cases are of limited practical interest
Within this improvement, the density of the lattice and th?or the communication problem at hand P

angle of the ray are taken into account when the ray S| Fig. 11 we fixp = 0.8 and compare the analytical
supposed to overcross the lewebr the level zero (see Fig. 9)'f0rmulas with the simulations by varying. Once again

Note also that to the limity — 0/1 (42) behaves like the exact solution [see (26) in Section V-A] is practically

Eggf'c:rt]sl,f\'re(Tia)rl'(sab:ththcz[lIfr?:gq'nz';gr:??c?rcae}: p:l'n;;c;:('jewindistinguishable from approximation (42). It turns out also
' 'P IS practically comnci vaiu that the matching with experimental values is excellent when

?nge'T]t:;fsstég\t/i'g;l)thasrf?g ﬁoélgéogglggggsjgeieggOtrr:ev'ri ?1 ~ 45°, whereas the approximation is less accurate for
(nonapproximate) éxpress;on of the propagation depth T?bafues off close to zero or 90 This is not surprising because
byi dvantaae over the exact solution drawn before .rel ¥ values of@ far.from 43 the hypothe5|§ of independence
obvious advantag . K&ween thez,,'s is questionable. Note, in fact, that when
in the simple and analytical form of (42). # — 90° there is a large probability of reflections between the
sametwo cells at the same level so that with high probability
zn = xn+1 = 0 for several values of.. Analogously, for
The final results summarized in (38) and (42) have beenlues off too close to zero with high probability, there is
verified by extensive simulations. Figs. 10 and 11 report thast a single reflection, i.e., the,’s are not defined at all
comparison of a computer-based ray launching experiment aatl the random procesllapsesin the single variablerg
the analytical results for a few values pfand 6. The circles following distribution (10) withé = 0.
represent the experimental points whereas the dashed line anfls an example of a situation in which the proposed approach
the solid line correspond to (38) and (42), respectively. The not applicable we consider just the limit case 6ot 0.
last curve is practically indistinguishable from the one obtaindeg. 12 clearly shows that the probability of propagation depth
with (26) using the (numerical) spectral representation ofosely follows the formula (in the figure it is represented by
matrix M. the dash-and-dot line)
The three plots of Fig. 10 refer to different values mf ) ok .
while the angle of incidence has been chogén= 45°. Priry 2k} =p% k=012, (43)
The matching between the simulated data and the analytidiis is the complement of the cumulative distributionsgf
approximations is quite good for values pfe (0.7,0.9). with # = 0. Note that neither Wald's approximation (solid

After expectation with respect ta,, we get

p 1l+4+pe

PI‘{TN > k‘} =~ (42)

VI. NUMERICAL SIMULATIONS
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i ; \ i ‘ unfortunately requires numerical methods for the computation
ool of the limit form of the transition matrix.

Therefore, we have been encouraged to proceed toward
08r 1 an analytical approximate solution in which the roles of the
ok & pooe | density of the lattice; and of the plane wave incidence angle

b 6 are well highlighted. This goal has been achieved making
= T 0N ’ use of the powerful tool of the martingale theory, resulting in
Nost 7N | two different approximations.

g ol ‘2\ | Both the derived exact solution and the anal_ytical _approxi-_

' . S0 mate formulas have been tested by means of simulations. This
o3t 2 Tl 1 analysis validates the adopted model for a wide range of values
ol “5 el . | of ¢ and 8. However, for values of that correspond to very

LS "TT----_____| dense or very sparse lattices and for incidence arfjldese
o1f el 1 to normal or radent, the model looses accuracy. These cases
. , . T must be handled by a different approach which is a topic of

0 ° 1 " 0 » % current investigation.

Fig. 12. Probability that the propagation depth is greater thaarsusk for Extensions of th? theory under investigation m_dUde Fhe Lase
p = 0.8 and#° = 0°. The dashed line represents Wald's approximation. THef & whole plane filled by random scatterers with an internal

solid line obeys (26), and it is practically indistinguishable from the valuegnd isotropic ray source and the loss evaluation (number of

obtained from (42). Circles denotes simulated values and dash-and-dot | : ;
describes formula. (43). |I‘%‘i‘lectlons) when the ray reaches a given level.

line) nor the alternative (exact) formula (42) (dashed line) are APPENDIX A
able to describe with sufficient accuracy the simulated values OUTLINE OF THE NUMERICAL PROCEDURE
(circles). This section is devoted to describing the numerical proce-

dure, realized in MATLAB, designed to check the analytical
results obtained above. Basically, the numerical method con-
sists of generating a (large) number of random lattices. In
Propagation in random media is a suitable model for a largach lattice a (large) number of rays daenchedand their
class of communication problems, including the last mile isspeopagation is asked to obey the simple rules of geometrical
and the characterization of urban area radio channels. The aiptics. Being each sequence of reflection levels a realization
of this paper has been to begin an analytical investigation @ffthe random procesg-,, » > 1}, the statistical properties of
such a topic by considering a simple scenario in which a plasech a process can be estimated from this collection of data.
wave approaches a half space of random scatterers. More precisely, we consider a square matrix /ofx h
The plane wave is modeled as an ensemble of parakdéments, with one and zero entries. Each entry is a realization
optical rays with a given incidence angfe The half-space of a Bernouilli RV assuming value one with probability
is modeled as a regular lattice of square sites and it Therefore, the symbol “1” corresponds to the occupied cells
characterized by the probabilitythat a given site is occupiedand the “0” to the empty ones. The status of each cell is
by a scatterer. The propagation of the rays in the lattice ircdependent of that of all the other cells.
assumed to obey the rules of the geometrical optics: whenEach cell is labeled by row and column indexXgs;j) and
the ray hits a scatterer it is completely reflected. Conversegypports its own coordinate system. A first coordinate,lsay
the propagation behaves as in free-space when empty sitesdemotes one of the four sides—north, east, south, and west.
hit. To make the problem tractable we further assume that tbme each side an abscissac (0,1) is defined (the square
ray propagation can be modeled as a random walk procese@ll is assumed to have unitary length), having the origin
which the ray jump afterth reflection over an occupied sitebehind an observer proceedings in clockwise direction on the
is independent of all previous jumps. cell frontier. Finally, the angle> that the direction of the ray
We have focused on evaluating the probability that a rgropagation forms with respect to the outstanding versor of
reaches a given level in the half-plane, which represents tive considered siderepresents the last coordinate. The angle
capability of the wave to penetrate into the medium. ¢ € (—7/2,7/2) is assumed to be positive if the direction
We have introduced an effective site occupancy probabilitf propagation lies in the quadrant delimited by the side at
g. = 1—(1—¢)'**n? that summarizes the effects of the incihand, the outstanding versor, and containing the origin of the
dence angl® and of the probability of occupaneyon the ray abscissa (the point = 0); otherwise,¢ is negative.
propagation mechanism. Then, the statistical characterizatioiWithin this formalism is very simple to simulate the ray
of the propagation process was carried out based on combinpgrgpagation in the lattice. Let us assume that a ray at the
geometrical considerations with probability theory conceptsgeneric program step is leaving the cell(:2, ) in the
Using these results, we have shown that an exact solution farsition defined byi?, a2, ¢2). The corresponding coordinate
the probability of reaching a given level in the half plane cawector will be Q¢ = [:2, 52,17, a%,¢?] (° means output coor-
be obtained by exploiting the theory of Markov chains, whictinate). Then, the simulation program checks for the status of

VIl. CONCLUSIONS
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the cell that the ray is trying to enter. If it is occupied, th@umber of realizations equalsdivided by the total number of
cell crossed by the ray remains the safife= %, j = j¢), generated sequences. This ratio is the searehgd) estimate.
and new input coordinate§’ = 12,a’ = a2, ¢\ = —¢2) (¢ Let us focus on Figs. 7 and 8. There, the experimental values
stems for input) are computed. These define the véttoThe of the x,,’'s PMF have been evaluated assuming identically
level position of the reflection (i.e., the current value of thdistributed RV’s. That is to say, the values, for different
row index+) is memorized for subsequent statistical analysia. have been considered as realizations of shenerandom
Conversely, if the cell is not occupied the propagation proceedsriable, and Figs. 7 and 8 report the empirical PMF of
to a new site. Also, in this case, it is straightforward to writsuch a variable. We have shown that this is allowed only
the input vectorQ’. Finally, the program evaluates the exiin the asymptotic case af,, = 1/2. For this reason, such
point of the ray from the cell at hand (by simple geometria simulation does not allows for testing the validity of (22).
rules), obtaining a new2?, ;. Hence, the single program stepgHowever, further deeper investigations on the distribution of
is completed. the singlexy,z2,--- (for brevity not detailed here), seem to
To initialize the algorithm the ray is supposed to approactonfirm that the asymptotic behavior is usually achieved after a
the lattice from above = 1, I = north, with random column few reflections. Such experiments seem to justify the adoption
index 5 = 1,2,---,h and random abscissa € [0,1). The of a distribution with symmetric tails witly,, = 1/2.
angle¢ being determined by the plane wave incidence afigle Finally, the experimental values of the propagation depth,
The simulation stops when the ray is either approaching levas depicted in Figs. 10 and 11, have been obtained by simply
zero (top of the lattice) or approaching levielh- 1 (lattice evaluating the fraction of realizations for which at least one
bottom side). sample exceeds the given value /of
For rays approaching the lateral sides of the lattice (namely,
if a ray tries to enter cells with eithef = 0 or j° = h + 1
column index) the simulation program provides to reinject
such rays (with the proper coordinates) from the opposite
side of the lattice. In this way, the number of columns in the In this section, the formal justification of interchange of
lattice is virtually infinite or, otherwise stated, the structurBmit and ensemble average in (31) is provided. First let us
is periodicin the horizontal direction. This does not seem titroduce the concept ofandom time The integer values
represent a serious drawback on the basis of the followifigPSSibly infinity) RV is calledrandom time(also Markov
reasoning. Let us consider the functional relationship betwelde) for the procesgx,,,n > 1} if the event{N = n} is
the entry point of a rayji,, ai,) in the lattice and its exit point détermined by the RV's:y, x5, - -+ z,,. In other wordsN is a
from a lateral Sidiout, jout, Gout) (bUt the same holds true random time for{x,, n > 1} if we can decide iff N = n}
more in general)(jum, am) = f(iont, jous; dout). A Simulation ©OF Not from knowledge of values; fromi = 1 up toi = n.
evidence is that a slight variation in the input coordinates caforeover, ifPr{\V < oo} = 1 then the random time is called
correspond to completely different output coordinates. In thi§oPPing timeThe RV introduced in (29) is in fact a random
sense, the functiorf(-) appears to behaotic because, even me. _
though f(-) represents a deterministic rule, the lateral exit W use now the following result [18, Th.7.2.2, p. 231],
point corresponding to givenentry point can be thought asl19: Cor. 3.1., p. 260] known asartingale optional stopping
random Hence, the entry point on the opposite lateral sidfeorem Let {r},,n > 1} be a martingale an&v a random
computed by the program is a random function of the inpdime with respect tofx,,, n > 1}. If
But randomlateral entry points behave like fixed lateral entry
points for rays propagating in different lattice realizations. (V) <0 (44)
Therefore, even though the structure is periodic, its equivalent

behaviors is essentially that of a singldattice with infinite and there exists a constafit < oo such that

horizontal d|mens_|o_n. o _ _ (o = ||y Ty -y 1) < K, forn < N (45)
To ensure statistical significance, the simulation program
generates a certain number of rays in the same lattice yf@n
“catch” the mean behavior of the propagation (the sequence
of reflection levels, for our purposes) with respect to the ray (r'’v) = (7). (46)
enter position. Results reported in this paper refers to 500 rays
per lattice. Then, the whole process is repeated for differentBy means of such a result we have only to show conditions
lattices (with the same and the samé). We found that a (44) and (45) to hold for the martingale at hand. We verify that
number of lattices in the order &b <+ 100 allows for suitable this is the case for (22) witky,, = 1/2 (namely, asymptotic
statistical investigation and it is compatible with the simulatioRMF of the jumps).
time constraints. Let us start with{(V) < co. Assume thaPr{z, = 0} # 1
With the described procedure we collect the sequences(nbndegenerate RV), thed an integerZ and0 < 6 < 1
reflection levels and evaluate the probabilistic quantities undgrch thatPr{|»/.| > k} > §é. Introducing the auxiliary RV’s
investigation. Precisely, with reference to Figs. 4 and 5 we aYg = r7,, Yz = 75y — v/, - -+, Y = rip — ;) it results that
interested in estimating the PMF af. Then, we consider only
the first sample of each simulated sequence and compute tha{N > 7T} < Pr{|Yi| < k}---Pr{|Y;| < k} < (1 — §)°

APPENDIX B
REGULARITY CONDITIONS FOR THEMARTINGALE 7,
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and, hence,

(N) = iPr{N > i} < Ti Pr{N > iT}

<T i(l—é)i
1=0

T<
5 0.
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Note also that a similar reasoning leads to the conclusion that

Pr{N < o} =1, i.e., the random time is actually a stopping
time.

For what concerns relation (45), noting that,| is simply
a geometric RV of parametet (and, hence, with expectation
Pe/qe), we immediately get

s 1) = (|ntallen, - -, 21)

Pe

(Irngr = rollan, -

= (lental) =

e

which ends the proof.

Before concluding this section, we check for conditio%

(|1} < oo needed to ensure the martingale property«f}

(il <3 (lil) = nfq’— < o0

1 €

K2

being¢. > ¢ and assuming > 0 (to avoid trivialities).
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