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Propagation Without Wave Equation
Toward an Urban Area Model

Giorgio Franceschetti,Fellow, IEEE, Stefano Marano, and Francesco Palmieri

Abstract—Propagation in random media is a topic of great
interest, whose application fields include, among others, the
so-called last mile problem as well as the modeling of dense
urban area radio communication channels. In this paper, a
simple scenario for this issue is considered, with an optical-ray
propagation across a medium of disordered lossless scatterers.
The propagation medium behaves like a percolating lattice and
the goal is to characterize statistically the propagation depth
in the medium as a function of the densityq of scatterers and
of �—the ray incidence angle. To the best of our knowledge,
this approach is totally new. The problem is mathematically
formulated as a random walk and the solutions are based on
the theory of the martingale random processes. The obtained
(approximate) analytical formulas have been validated by means
of numerical simulations, demonstrating the applicability of the
proposed model for a wide range of the global parametersq and
�. We believe that our results may constitute a promising first step
toward the solution of more complicated propagation models and
a wide class of communication problems.

Index Terms—Last mile problem, propagation in random me-
dia, urban area communications.

I. INTRODUCTION

DURING the last few years the problem of setting efficient
fast communication links in dense populated areas has

attracted increasing interest. Use of radio waves as a conve-
nient alternative to most traditional cable or fiber connections
has been suggested [1]–[4]. This solution is usually referred
to as the last mile approach, whereas a terminal area of
limited extension is served by means of radio links, instead
of wires. This area may be a limited section of a city, a
few buildings, or even a single building. Models, algorithms
and mathematical tools for prediction of the electromagnetic
signal characteristics in this situation is becoming of critical
importance.

The natural starting point to approach the problem ana-
lytically may appear to be the huge existing literature about
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Telecomunicazioni, Università degli Studi di Napoli “Federico II”, Napoli,
I-80125 Italy, and with the Department of Electrical Engineering, University
of California, Los Angeles, California 90024-1594 USA.

S. Marano is with the Dipartimento di Ingegneria dell’Informazione ed
Ingegneria Elettrica, Università degli Studi di Salerno, Fisciano (Salerno), I-
84084 Italy.

F. Palmieri is with the Dipartimento di Ingegneria Elettronica e delle
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propagation in random media. A good comprehensive refer-
ence book is [5]. In particular, in theline-of-sight situation
the transmitters send a signal trough a random medium and
the objective of the model is to characterize the statistical
behavior of the received signal. Quite sophisticated statistical
characterizations of such a scenario are available in the liter-
ature, but unfortunately, a little thought shows that all these
results are not applicable to our problem. In fact, the scatterers
are assumed to be either small compared to the (incident)
wavelength [6], i.e.,

(1)

is a typical dimension of the scatterers), or large, but
tenuous[7],

(2)

with being the relative dielectric constant of the scatterers.
These assumptions are in fact inappropriate for characterizing
urban areas because our scatterers are buildings, walls, trees,
etc., larger (and usually exceedingly larger) than the incident
signal wavelength and certainly not tenuous.

As the wave approachseems to be inappropriate, aray
approachappears to be an attractive candidate, particularly in
view of the large dimensions of the scatterers compared to the
wavelength. In the related existing literature it is usually as-
sumed that the communication channel can be represented by a
multipathmodel [8]. Typically, the statistical characterization
of the multipath component parameters has been performed
by fitting data between somesuitableprobability distribution
family and experimental measurements [9]–[13]. It is also
certainly possible to conceiveray launchingsimulations for
any given scenario, but this may pose a formidableray tracing
problem even for modern computers [14], [15]. Moreover, it is
widely accepted that general conclusions and guidelines cannot
be easily reached only on the basis of numerical simulations,
even though there is no doubt that they usually constitute
important validation of the theory.

The aim of this paper is to begin the exploration of an ana-
lytical solution to the above mentioned problem. We refer here
to a very simplified canonical scenario as described in Fig. 1.
The medium is composed of sites organized in a regular two-
dimensional lattice. We consider here the simplest scenario of
square sites, even though alternative choices are possible. (For
instance triangular and honeycomb lattices are other possible
two-dimensional structures, while cubic lattices and diamond
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Fig. 1. Example of ray propagation in a square lattice.

Fig. 2. Computer generated lattices with occupancy probabilityq = 1 � p.

lattices are examples of three-dimensional arrangements [16].)
Each site can be either occupied, or empty. The arrangement is
referred to as apercolating latticeand has been widely studied
and used to model physical phenomena like forest fires, spin
diffusions in ferromagnets, gelation of polymers, and other
kinds of diffusion in random media [16].

Let us assume that the status (occupied or empty) of a cell
is independent of the status of all other cells in the lattice (see
next section) and assume that the occupancy probability is

. Given a very large lattice randomly occupied with
probability , percolation theory deals (among other topics)
with the quantitative analysis of groups of neighboring empty
sites (clusters): form, average size, number, etc. For modest
values of (say, near zero) the average dimension of clusters
is small, while for near unity the lattice looks like a single
cluster with sporadic holes. Forincreasing from zero to one,

there exists a certain critical value for which a large cluster
of empty sites connecting the opposite sides of the lattice
(top side and bottom side of the lattices in Fig. 2), appears
for the first time. This critical value is namedpercolating
threshold and it has been estimated to be
for the square geometry [16]. Near the percolating threshold
the characteristics of the-lattice change qualitatively, namely
the structure exhibits aphase transition.

Our approach was originally inspired by the percolation
theory, but it focuses on a rather different problem. In fact,
we are interested inray propagation instead of diffusion.
Nevertheless, some aspects of the theory are of interest to
us. For instance, a result of percolation theory that could
turn out to be useful is the evaluation of the probability that
two sites at a certain distance apart do not belong to the
same cluster. The absence of a connection means that neither
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diffusion nor ray propagation between the two sites is allowed.
For this reason, in this work we limit our attention to the
range of site occupancy such that the cell connection exists
with sufficiently large probability, i.e., . Therefore,
we consider the medium for values of already above the
phase transition betweendiffusion (propagation) preventedand
diffusion (propagation) allowed.

Consider now a monochromatic plane wave (in the Fig. 1
it is just a single ray) impinging at angle on a half-space
filled by the scatterers. With reference to Fig. 1, we follow
the path of a ray that undergoes successive reflections at
levels coincident with the rows of the lattice.
We address (and answer) the following question. “What is the
probability that the ray reaches (and eventually passes) the
(row) level ?”

Other interesting questions are: “what is the probability
that level k is reached at the th reflection?” and “what
is the probability that rays intercept at the same site in
the lattice?” Answering to the former question is important
when reflection losses needed to be included, while a solution
for the latter question would allow a second-order statistical
characterization of the transmitted field. We concentrate here
on the propagation depth question leaving the other problems
to a future study.

We understand that the scenario of Fig. 1 is an oversim-
plified version of the real propagation problem. In spite of
this, its analytical solution constitutes to our knowledge a
first rigorous result, totally new with respect to conventional
propagation studies. Conclusions are by no means trivial and,
we believe, of real practical importance. Determination of
a propagation depth(as the answer to the stated question),
which can be generalized up to the third dimension, may be
relevant to estimation of the last mile actual size, giving a
criterion for choosing electromagnetic compatible neighboring
cell frequencies.

If the event that a site is empty or occupied is totally
unrelated to neighboring site states, we have a completely
random distribution of occupancies. Conversely, any statistical
dependence among cells would mean that the scatterers are
structurally organized. The limit case would be that of a fully
ordered distribution of scatterers. Very structured lattices may
be more appropriate models for modern cities that typically
have a very regular distribution of buildings and streets.
A (full) random model instead may fit better central parts
of old towns (as common in Europe), when distribution of
constructions proceeded with marginal rules over the years. In
the following, we refer to this last model and assume that the
generic site is occupied with probabilityindependently from
all others sites.

This paper is organized as follows. In Section II, the model
of the propagation channel is introduced and the lattice char-
acteristics are briefly discussed. Sections III and IV deal
with the statistical characterization of the random propagation
process. In Section V, we first explore the exact numerical
solution, and hence we derive analytical approximate formulas
for the propagation depth. Section VI provides comparison
between the derived formulas and numerical simulations.
Final comments and conclusions are drawn in Section VII.

The outline of the numerical procedure used to check the
analytical approximations is deferred to Appendix A, while
some analytical details are postponed to Appendix B.

II. THE PROPAGATION MODEL

Let us consider a regular lattice of square cells as depicted
in Fig. 1. With no loss of generality, the side of such cells is
assumed of unitary length. Each cell can be either occupied or
empty. In the former case, an impinging ray is totally reflected
according to the geometrical optics reflection laws; in the
latter, the ray freely progresses. The scatterers are impenetrable
so that the medium is lossless. Moreover, diffractions at the
edges of the lattice are ignored. We assume further that
the lattice has infinite horizontal extension; therefore, our
results will be (statistically) invariant with respect to the
horizontal coordinate. Also, the number of levels (in the
vertical dimension) can be thought as infinite for our purposes.
Four (computer generated) examples of (limited portion of)
such percolating lattices, with values of
are depicted in Fig. 2.

The aim of our work is to answer the question stated in the
previous section, for lattices characterized by a given value
of and for impinging waves with a prescribed incidence
angle . Let us model the plane wave impinging on the
lattice in terms of parallel rays and consider a ray entering
the propagation medium with angle. The ray reaches the
(row) levels after successive reflections over the
(occupied) sites (see Fig. 1). We have

(3)

wherein is the initially reached level (at which the first
reflection takes place) and the sequence

(4)

is the level change after reflection. For reasons that will be
clear later, let us define also ashifted version, say
of the sequence

(5)

For a given lattice and prescribed incidence angleand
entry position, the single ray path can be completely deter-
mined by the rules of geometrical optics. However, we are
interested in the mean behavior of the propagation for a given
value of the lattice density , hence, we associate to
each randomly chosen lattice and ray entry point a different
member function of thestochastic process .
With this model we obtain a probabilistic characterization
of averaged over the ensemble of possible-
lattice realizations and possible entry points. In general, the
random variables (RV’s) are statistically dependent and
such a dependence is a function of the problem parameters.
To make the problem tractable, however, we model as
independent RV’s and, therefore, the sequence (3) has the
structure of a classical random walk. We see in the following
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Fig. 3. Derivation ofr0 ’s distribution.

that for certain values of the problem parametersand this
assumption is quite realistic, even though it may fail in other
cases. These differences are highlighted in drawing comments
on the simulation results.

Let us divide the problem at hand in two parts.

1) A half-space filled with scatterers is hit by a ray that
undergoes a first reflection at level. The first objective
is to determine the statistics of (see Figs. 1 and 3).

2) Starting from level , characterize the propagation of
subsequent reflections. In other words, givenfor every
depth , determine the probability that the ray
intercepts that level before possibly escaping from level

.

Following this framework in Sections III and IV, we derive
the basic tools to deal with the abovementioned two issues.

III. D ISTRIBUTION OF

We derive hereafter the probability mass function (PMF) of
, with . To this aim

and with reference to Fig. 3, let us consider a ray entering
the lattice with incidence angle. It is clear that the searched
probability is equal to for

(6)

For such a probability can be computed as the product

are freely crossed

a reflection takes place at level

that levels up to are freely crossed

The first factor equals raised to the number of empty cells
crossed by the ray to reach level. This number equals the
sum of crossed row and columns plus one (to have access at
level ) that can be taken1 to be (see
Fig. 3). Accordingly

levels up to are freely crossed

(7)

where

and (8)

are defined aseffectiveprobabilities of a site to be empty or
occupied, respectively.

1The value should be bounded to an integer, but we ignore this fact.

Fig. 4. Theoretical (line) and numerical (circles) values ofPr (i) versusi;
with �� = 45�.

A reflection at level takes place if the first cell hit by the
ray proceedinginto the level is occupied or if that cell is
empty and the ray hits the next one, that must be occupied,
and so on. Therefore, since the ray within the levelcan cross
at most cells

a reflection takes place at levelgiven that

levels up to are freely crossed

(9)

The final result is then

(10)

Note the role played by the effective probability of site
occupancy that combines the effects of the incidence
angle and of the probability of occupancy. It is worth
noting also that the random variable can be thought as the
product of two independent RV’s, say . The former
follows a geometric distribution with range
and parameter i.e., with

. The latter is a Bernoulli RV with range and
parameter , i.e., . The RV models the
discontinuity at the edge of the lattice (the ray enters the filled
half piano with probability ), while takes into account the
propagation within the lattice, which is characterized by the
effective probability of site occupancy .

The analytical result of (10) has been validated by means
of numerical experiments. Curves for different values of

and are depicted in Figs. 4 and 5, showing excellent
agreement between simulation and theory. Details of the
numerical procedure are postponed in Appendix A.

IV. DISTRIBUTION OF SUCCESSIVE JUMPS

The characterization of the stochastic process involved in
the study of the propagation depth requires computation of
the PMF of the (row) jump . The analysis can be
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Fig. 5. Theoretical (line) and numerical (circles) values ofPr (i) versusi,
with p = 0:8.

developed by following the same lines of Section III and it is
the topic of the present section.

With reference to Fig. 6, we can encounter three mutually
exclusive situations.

1) There is no jump because the reflection takes place
within the same (row) level (in the figure it is the case
of ). This is easy to characterize by means
of the same arguments yielding (9), giving .

2) There is a positive jump from level to
(in the figure for instance ), that

can be described by the following:

(11)

where again has been computed
according to the same arguments used for in
Section III.

3) There is a negative jump from level to level (in
the figure ), giving

(12)

Computation of the probabilities that the jump is positive
or negative is now in order. We have

(13)

By supposing that the chances of both positive and negative
jumps are on the same footing,

(14)

we get

(15)

Unfortunately, a little thought shows that the above simple
assumption may not always be true. In fact, examination of
Fig. 6 clearly shows that a reflection on a horizontal face of a

filled site inverts the sign of the jump, while the opposite effect
holds for reflection on a vertical face. For an incidence angle

we know that at every change in level, the ray hits
vertical barriers. Therefore, we can assume that the probability
of hitting a vertical face is

(16)

and that of hitting an horizontal face is

(17)

Now equals the probability of the eventout
of reflections, an even number of them has happened on
horizontal facesand . In

(18)

(19)

In a similar way

(20)

Therefore, and
, where

(21)

In conclusion

(22)

Note that we can think of as the product of a geometric
RV with for and

, an RV of Bernoulli type for which
and . The latter takes into

account the possibility of both positive and negative jumps,
the former models the propagation into the lattice. Note also
that , namely the distribution tails tend to
become symmetrical with a rate of convergence oftoward

depending upon . We conclude that the distribution is
only asymptoticallysymmetric zero-mean and the RV’s
are only asymptotically identically distributed.

Also, in this case, analytical results have been tested by
means of numerical experiments, as depicted in Figs. 7 and
8. The simulations average a sufficiently large number of
realizations and can be considered to be asymptotic estimate
with . These results are detailed in Appendix A.

V. EVALUATION OF THE PROPAGATION DEPTH

In this section, evaluation of the propagation depth is
carried out. First we explore the exact numerical solution
to the propagation model under the assumption

with independent and identically distributed (iid)
’s. Unfortunately, the exact solution requires numerical

manipulations of the transition matrix of the model, that do
not appear to lend itself to a simple analytical expression. To
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Fig. 6. Derivation of thexn’s distribution.

Fig. 7. Theoretical asymptotic (line) and numerical (circles) values of
Px (i) versusi for �� = 45�.

more specifically understand the quantitative influence of the
problem parametersand on the propagation depth, we also
develop an alternative approximate approach yielding a very
simple analytical solution.

We would emphasize that both the exact and the ap-
proximate solutions refer to the assumed model. Numerical
simulations confirm the adequacy of the model for most
incidence angles and density parameters.

A. Exact Solution

The propagation depth can be investigated on the basis of
the classical Markov chain theory. In fact, the process of (3),
within the assumption of independent jumps and with the
asymptotic expression of the ’s with , obtained
in the previous section, is an example of a homogeneous
Markov chain. In particular, it is a random walk with two
absorbingbarriers (the interested reader is referred to [17]).

Let us think of the lattice levels as the possible
statesof a Markov chain. Consider state (level) zero as an

Fig. 8. Theoretical asymptotic (line) and numerical (circles) values of
Px (i) versusi for p = 0:8.

absorbing state; when the rays hit such a level the process
terminates and similarly for the state (level). Let us organize
the probability of transition from stateto state in a matrix

whose entries are

(23)

If we are away from the states zero and, the transition
probabilities are described by the jump ’s) distribution,
i.e., , . Also,

and



FRANCESCHETTIet al.: PROPAGATION WITHOUT WAVE EQUATION TOWARD URBAN AREA MODEL 1399

since the ray can overshoot over the barriers. The
transition matrix for the Markov chain is then seen in

the equation at the bottom of the next page.
The initial state distribution of such a Markov chain is

for and for
that, organized in a vector (initial state distribution vector),
gives

(24)

If we denote with the state distribution vector at the
st reflection, we have

(where is the PMF of and obviously

...
...

(25)

The probability we are searching for is just the last entry of
when increases to infinity, i.e.,

(26)

The limit matrix can be evaluated (numerically)
by spectral decomposition of . It is obvious that the process,
having two absorbing barriers, provides asymptotically a null
vector except for the first and the last entries.

B. Approximate Analytical Solution

The solution provided above quite accurately reflects the
propagation phenomenon. However, in this section, we also
derive simple analytical (approximate) expressions that do not
require the computation of the limit form of . This gives us
an easier-to-handle solution that also highlights more clearly
the role of the problem parametersand .

Let us start off again from the process (5) and fix a
prescribed value of the RV . Compute the

conditioned ensemble average

(27)

where the level jumps have been assumed statistically uncou-
pled from each other.

As , i.e., positive and negative jumps
are (asymptotically) equally likely (see Section IV) and

(see Appendix B), the process
can be considered amartingalewith respect to
[18], [19], and

(28)

For a martingale, it is easily seen that for all .
Consider now another random sequence, thestopped

process, related to

(29)

wherein is the smallest value between and in Fig. 9;
is the number of jumps undergone by the ray to reach

(and eventually pass) level, whereas is the number of
jumps to cross back to level zero and disappear. Formally,

or . For instance, the ray
on the left in Fig. 9 leaves the (effective) lattice after 21
reflections and , while the
ray on the right of the same figure reaches level(and
passes it hitting level after five reflections so that

. In the latter instance for
, whereas and ,

etc. Within this formalism answering to the question stated in
Section I means evaluating the probability or
else for a given value of . In fact, this is
the probability that the ray has reached at least depthbefore
escaping from the level zero.

It is useful to see the random walk as a
martingale because a number of very general results are
available in the literature and, in the following, we make
explicit use of some of them. To this goal, we note that if

is a martingale with respect to , then
is a martingale with respect to [18]

too and, consequently

(30)

...
...

...
...

...
...
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Fig. 9. Examples of propagating rays.

where the last equality derives from . If
, then for sufficiently large , .

This implies

(31)

that finally yields

(32)

(for the assumption of zero mean ’s). The interchange
of limit and ensemble average in (31) is allowed by the
martingale optional stopping theorem (see Appendix B for
details).

Now

(33)

where .
A first approximation (usually referred to as Wald’s approx-

imation) is to assume

(34)

(35)

The first equation basically means that when the ray over-
crosses the level , it does not overcross it significantly.
A similar interpretation holds for the second relationship. With
these assumptions, (33) yields

(36)

Actually, the previous probability is conditioned on ,
(namely represents ) and, until now, we have
considered the case of . In the general case, a little
thought should convince us that

(37)

To release the conditioning over, ensemble expectation of
last relationship with respect to distribution (10) has to be
performed. This yields (after some algebra)

(38)

that is, the searched results. It is important to stress that the
distribution of does not play a role in deriving relationship
(38) (except for verifying regularity conditions for validity of
(32)—see Appendix B); all that is required is the zero-mean
property of the ’s. As a check for (38), note that

as expected.
An improvement of the approximation of (38) can be

derived by exploiting the distribution (22) of the ’s. In fact

(39)

The approximation consists in substituting everywhere in the
right-hand side of the first equality of the previous expres-
sion with its expectation zero. Then the evaluation of

is performed basing upon the distribution
of the ’s (note that the previous approximation, lacking of
knowledge of the statistical characterization of’s, was to
assume further . In a similar
fashion

(40)
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Fig. 10. Probability that the propagation depth is greater thank versusk for
different values ofp and for �� = 45

�. The dashed line represents Wald’s
approximation of (38). The solid line represents the exact solution obtained
by (26) using spectral decomposition of the matrixM and also (42). Circles
denotes simulated values.

This yields

(41)

After expectation with respect to , we get

(42)

Within this improvement, the density of the lattice and the
angle of the ray are taken into account when the ray is
supposed to overcross the levelor the level zero (see Fig. 9).
Note also that to the limits (42) behaves like
(38). It is remarkable that from a numerical point of view,
relationship (42) is practically coincident for all values ofand

of interest, with the exact solution outlined in Section V-A
(see next section). Hence, it can be considered as the right
(nonapproximate) expression of the propagation depth. The
obvious advantage over the exact solution drawn before relies
in the simple and analytical form of (42).

VI. NUMERICAL SIMULATIONS

The final results summarized in (38) and (42) have been
verified by extensive simulations. Figs. 10 and 11 report the
comparison of a computer-based ray launching experiment and
the analytical results for a few values ofand . The circles
represent the experimental points whereas the dashed line and
the solid line correspond to (38) and (42), respectively. The
last curve is practically indistinguishable from the one obtained
with (26) using the (numerical) spectral representation of
matrix

The three plots of Fig. 10 refer to different values of,
while the angle of incidence has been chosen .
The matching between the simulated data and the analytical
approximations is quite good for values of .

Fig. 11. Probability that the propagation depth is greater thank versusk
for different values of� and forp = 0:8. The dashed line represents Wald’s
approximation of (38). The solid line represents the exact solution obtained by
(26), practically indistinguishable from the values obtained from (42). Circles
denotes simulated points.

Naturally, the analytical approximation is not applicable for
values of too close to unity or values which are too small, i.e.,
near percolation threshold . In fact, in a sparse
medium the propagation looks like propagation in free-space
and the reflections are events with probability close to zero.
Conversely, in a dense medium the large probability ofloops
(repeated reflections over the same few cells) suggests that
the propagation is practically inhibited, and the assumption of
statistically uncoupled jumps would loose validity. It should be
noted that these extreme cases are of limited practical interest
for the communication problem at hand.

In Fig. 11 we fix and compare the analytical
formulas with the simulations by varying. Once again
the exact solution [see (26) in Section V-A] is practically
indistinguishable from approximation (42). It turns out also
that the matching with experimental values is excellent when

, whereas the approximation is less accurate for
values of close to zero or 90. This is not surprising because
for values of far from 45 the hypothesis of independence
between the ’s is questionable. Note, in fact, that when

there is a large probability of reflections between the
sametwo cells at the same level so that with high probability

for several values of . Analogously, for
values of too close to zero with high probability, there is
just a single reflection, i.e., the ’s are not defined at all
and the random processcollapsesin the single variable
following distribution (10) with .

As an example of a situation in which the proposed approach
is not applicable we consider just the limit case of .
Fig. 12 clearly shows that the probability of propagation depth
closely follows the formula (in the figure it is represented by
the dash-and-dot line)

(43)

This is the complement of the cumulative distribution of
with . Note that neither Wald’s approximation (solid



1402 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 9, SEPTEMBER 1999

Fig. 12. Probability that the propagation depth is greater thank versusk for
p = 0:8 and�� = 0

�. The dashed line represents Wald’s approximation. The
solid line obeys (26), and it is practically indistinguishable from the values
obtained from (42). Circles denotes simulated values and dash-and-dot line
describes formula (43).

line) nor the alternative (exact) formula (42) (dashed line) are
able to describe with sufficient accuracy the simulated values
(circles).

VII. CONCLUSIONS

Propagation in random media is a suitable model for a large
class of communication problems, including the last mile issue
and the characterization of urban area radio channels. The aim
of this paper has been to begin an analytical investigation of
such a topic by considering a simple scenario in which a plane
wave approaches a half space of random scatterers.

The plane wave is modeled as an ensemble of parallel
optical rays with a given incidence angle. The half-space
is modeled as a regular lattice of square sites and it is
characterized by the probabilitythat a given site is occupied
by a scatterer. The propagation of the rays in the lattice is
assumed to obey the rules of the geometrical optics: when
the ray hits a scatterer it is completely reflected. Conversely,
the propagation behaves as in free-space when empty sites are
hit. To make the problem tractable we further assume that the
ray propagation can be modeled as a random walk process in
which the ray jump after th reflection over an occupied site
is independent of all previous jumps.

We have focused on evaluating the probability that a ray
reaches a given level in the half-plane, which represents the
capability of the wave to penetrate into the medium.

We have introduced an effective site occupancy probability
that summarizes the effects of the inci-

dence angle and of the probability of occupancyon the ray
propagation mechanism. Then, the statistical characterization
of the propagation process was carried out based on combining
geometrical considerations with probability theory concepts.

Using these results, we have shown that an exact solution for
the probability of reaching a given level in the half plane can
be obtained by exploiting the theory of Markov chains, which

unfortunately requires numerical methods for the computation
of the limit form of the transition matrix.

Therefore, we have been encouraged to proceed toward
an analytical approximate solution in which the roles of the
density of the lattice and of the plane wave incidence angle

are well highlighted. This goal has been achieved making
use of the powerful tool of the martingale theory, resulting in
two different approximations.

Both the derived exact solution and the analytical approxi-
mate formulas have been tested by means of simulations. This
analysis validates the adopted model for a wide range of values
of and . However, for values of that correspond to very
dense or very sparse lattices and for incidence anglesclose
to normal or radent, the model looses accuracy. These cases
must be handled by a different approach which is a topic of
current investigation.

Extensions of the theory under investigation include the case
of a whole plane filled by random scatterers with an internal
and isotropic ray source and the loss evaluation (number of
reflections) when the ray reaches a given level.

APPENDIX A
OUTLINE OF THE NUMERICAL PROCEDURE

This section is devoted to describing the numerical proce-
dure, realized in MATLAB, designed to check the analytical
results obtained above. Basically, the numerical method con-
sists of generating a (large) number of random lattices. In
each lattice a (large) number of rays arelaunchedand their
propagation is asked to obey the simple rules of geometrical
optics. Being each sequence of reflection levels a realization
of the random process , the statistical properties of
such a process can be estimated from this collection of data.

More precisely, we consider a square matrix of
elements, with one and zero entries. Each entry is a realization
of a Bernouilli RV assuming value one with probability.
Therefore, the symbol “1” corresponds to the occupied cells
and the “0” to the empty ones. The status of each cell is
independent of that of all the other cells.

Each cell is labeled by row and column indexes and
supports its own coordinate system. A first coordinate, say,
denotes one of the four sides—north, east, south, and west.
One each side an abscissa is defined (the square
cell is assumed to have unitary length), having the origin
behind an observer proceedings in clockwise direction on the
cell frontier. Finally, the angle that the direction of the ray
propagation forms with respect to the outstanding versor of
the considered siderepresents the last coordinate. The angle

is assumed to be positive if the direction
of propagation lies in the quadrant delimited by the side at
hand, the outstanding versor, and containing the origin of the
abscissa (the point ; otherwise, is negative.

Within this formalism is very simple to simulate the ray
propagation in the lattice. Let us assume that a ray at the
generic program step is leaving the cell in the
position defined by . The corresponding coordinate
vector will be ( means output coor-
dinate). Then, the simulation program checks for the status of
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the cell that the ray is trying to enter. If it is occupied, the
cell crossed by the ray remains the same ,
and new input coordinates (
stems for input) are computed. These define the vector. The
level position of the reflection (i.e., the current value of the
row index ) is memorized for subsequent statistical analysis.
Conversely, if the cell is not occupied the propagation proceeds
to a new site. Also, in this case, it is straightforward to write
the input vector . Finally, the program evaluates the exit
point of the ray from the cell at hand (by simple geometric
rules), obtaining a new . Hence, the single program step
is completed.

To initialize the algorithm the ray is supposed to approach
the lattice from above north, with random column
index and random abscissa . The
angle being determined by the plane wave incidence angle.
The simulation stops when the ray is either approaching level
zero (top of the lattice) or approaching level (lattice
bottom side).

For rays approaching the lateral sides of the lattice (namely,
if a ray tries to enter cells with either or
column index) the simulation program provides to reinject
such rays (with the proper coordinates) from the opposite
side of the lattice. In this way, the number of columns in the
lattice is virtually infinite or, otherwise stated, the structure
is periodic in the horizontal direction. This does not seem to
represent a serious drawback on the basis of the following
reasoning. Let us consider the functional relationship between
the entry point of a ray in the lattice and its exit point
from a lateral side (but the same holds true
more in general): . A simulation
evidence is that a slight variation in the input coordinates can
correspond to completely different output coordinates. In this
sense, the function appears to bechaotic because, even
though represents a deterministic rule, the lateral exit
point corresponding to agiven entry point can be thought as
random. Hence, the entry point on the opposite lateral side
computed by the program is a random function of the input.
But randomlateral entry points behave like fixed lateral entry
points for rays propagating in different lattice realizations.
Therefore, even though the structure is periodic, its equivalent
behaviors is essentially that of a singlelattice with infinite
horizontal dimension.

To ensure statistical significance, the simulation program
generates a certain number of rays in the same lattice to
“catch” the mean behavior of the propagation (the sequence
of reflection levels, for our purposes) with respect to the ray
enter position. Results reported in this paper refers to 500 rays
per lattice. Then, the whole process is repeated for different
lattices (with the same and the same ). We found that a
number of lattices in the order of allows for suitable
statistical investigation and it is compatible with the simulation
time constraints.

With the described procedure we collect the sequences of
reflection levels and evaluate the probabilistic quantities under
investigation. Precisely, with reference to Figs. 4 and 5 we are
interested in estimating the PMF of. Then, we consider only
the first sample of each simulated sequence and compute the

number of realizations equalsdivided by the total number of
generated sequences. This ratio is the searched estimate.

Let us focus on Figs. 7 and 8. There, the experimental values
of the ’s PMF have been evaluated assuming identically
distributed RV’s. That is to say, the values for different

have been considered as realizations of thesamerandom
variable, and Figs. 7 and 8 report the empirical PMF of
such a variable. We have shown that this is allowed only
in the asymptotic case of . For this reason, such
a simulation does not allows for testing the validity of (22).
However, further deeper investigations on the distribution of
the single (for brevity not detailed here), seem to
confirm that the asymptotic behavior is usually achieved after a
few reflections. Such experiments seem to justify the adoption
of a distribution with symmetric tails with .

Finally, the experimental values of the propagation depth,
as depicted in Figs. 10 and 11, have been obtained by simply
evaluating the fraction of realizations for which at least one
sample exceeds the given value of.

APPENDIX B
REGULARITY CONDITIONS FOR THEMARTINGALE

In this section, the formal justification of interchange of
limit and ensemble average in (31) is provided. First let us
introduce the concept ofrandom time. The integer values
(possibly infinity) RV is calledrandom time(also Markov
time) for the process if the event is
determined by the RV’s . In other words is a
random time for if we can decide if
or not from knowledge of values from up to .
Moreover, if then the random time is called
stopping time. The RV introduced in (29) is in fact a random
time.

We use now the following result [18, Th.7.2.2, p. 231],
[19, Cor. 3.1., p. 260] known asmartingale optional stopping
theorem. Let be a martingale and a random
time with respect to . If

(44)

and there exists a constant such that

(45)

then

(46)

By means of such a result we have only to show conditions
(44) and (45) to hold for the martingale at hand. We verify that
this is the case for (22) with (namely, asymptotic
PMF of the jumps).

Let us start with . Assume that
(nondegenerate RV), then an integer and
such that . Introducing the auxiliary RV’s

it results that
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and, hence,

Note also that a similar reasoning leads to the conclusion that
, i.e., the random time is actually a stopping

time.
For what concerns relation (45), noting that is simply

a geometric RV of parameter (and, hence, with expectation
, we immediately get

which ends the proof.
Before concluding this section, we check for condition

needed to ensure the martingale property of

being and assuming (to avoid trivialities).
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