Single Molecule Spectroscopy Spring, 2010

Professor: 楊士成, Dr. E. S. Yeung

yeung@ameslab.gov

TA: 陳玟岑, Ms. Chen Wen-Tsen, striting@yahoo.com.tw

References: "Spectrochemical Analysis", J. D. Ingle and S. R. Crouch, 1988 Various supplementary journal articles

- Topics: 1 Properties of light
 - 2 Physical optics, spectrometers
 - 3 Spectrograph problem set, light sources, fiber optics
 - 4 The laser, lasers for sensitive measurements
 - 5 Detectors, photoelectric, arrays
 - 6 Photoacoustic spectroscopy, thermal lens spectroscopy
 - 7 Fluorescence and phosphorescence
 - 8 FT-IR instrumentation
 - 9 Raman spectroscopy normal, resonance enhanced, surface enhanced
 - 10 Spectroscopic measurements in small samples, laser-excited atomic fluorescence, laser-enhanced ionization
 - 11 Single Atom Detection
 - 12 Single molecule detection principles and single fluorophors
 - 13 Biological imaging dyes, beads, nanoparticles and quantum dots
 - 14 Single molecule detection physical dynamics
 - 15 Single molecule detection reactions
 - 16 Single molecule detection molecular motors
 - 17 Microscopy for single cell imaging bright/dark field, phase contrast, fluorescence, confocal, multiphoton, polarization
 - 18 Biological imaging FRET, FRAP, GFP, antibodies, aptamers
 - 19 Biological imaging DIC, native fluorescence, chemiluminescence
 - 20 Near-field Microscopy
 - 21 Super resolution, CARS, STED, STORM
 - 22 Microfluidics for single cell and single molecule manipulation

22 2-hour lectures, 1 self-study problem set (graded), 1 literature report with 15 min class presentation (graded)