Cost Accounting

JTKAO

1

Syllabus

- Definition
- Purpose
- Advantages
- Method
- Break-even analysis
- Billable test

Definition

Cost accounting

A technique for calculating costs associated with tasks or processes that are performed by an organization.

When do cost analysis

To introduce new services To eliminate a test To modify methods To replace or introduce an equipment To evaluate tests referred to other laboratories To decide deployment of personnel JTKAO

Advantages

Advantages of using cost analysis

- Being beneficial to the institution, the laboratory and the patient
- Being valuable in the continued surveillance of laboratory cost
- Being useful in selecting costefficient procedures
- Having more effective laboratory budgeting programs

Method

Method to establish test price

Comparison method
Engineering method
Historical method

Comparison method setting test price by comparing with others

Different cost at different hospital

Comparison method

Easier
Not very accurate
Neither reliable nor fair

Engineering method setting test price by calculating both direct and indirect cost

Costs

Direct cost

Labor costs

- Performance of test
- •Specimen procurement
- Supplies for specimen procurement
- Supplies for performing test
- Reagents for performing test

Indirect costs

- Labor for running standards and controls
- Reagents and supplies for standards and controls
- Costs of standards and controls
- Overhead
- Depreciation of capital equipment
- Building depreciation

Direct cost

- Labor costs
 Performance of test
 - **CAP** workload units x average salary/min
 - **Specimen procurement**
 - **CAP** workload units x average salary/min

Direct cost

Supplies for specimen procurement

Cost x **number used/test**

JTKAO

17

Direct cost

Reagents for performing test

Cost ÷ tests

Labor for running standards and controls Labor for standards = [standards (12 month) - patient tests (12 month)] x (CAP unit x average salary/min) Labor for controls = [controls (12 month) ÷ patient tests (12 month)] x (CAP unit x average salary/min)

Reagents and supplies

Reagents and supplies for standards = [standards (12 month) ÷ patient tests (12 month)] x (supply/test + reagent/test)

Reagents and supplies for controls = [controls (12 month) ÷ patient tests (12 month)] x (supply/test + reagent/test)

Overhead

Allocated overhead = allocated overhead (year) ÷ total laboratory tests (year)

Laboratory overhead = laboratory overhead (year) ÷ total laboratory tests (year)

Depreciation of capital equipment

Equipment used depreciation/year ÷ tests/year

Building depreciation

Depreciation allocated ÷ total laboratory tests (year)

Total costs =

Total directs costs + Total indirect costs

Price per test =

Total costs x (1 + profit)

Engineering method

More accurate
More time-consuming
Expensive to perform

Laboratory

Revenue center
 Nonrevenue center
 Allocation of cost

Laboratory direct costs (I)

	Chem	Hema	Micro	BB	Sero	
Salaries	1,208	1,125	1,233	1,192	1,091	
Equipment	226	244	272	132	318	
Reagents	1,914	291	1,372	126	2,591	
Others	120	86	118	12,537	116	
Subtotal	3,468	1,746	2,995	13,987	4,116	
unit: thousand						

28

Laboratory direct costs (II)

	Lab admin	SCC	Information desk
Salaries	2,098	40	40
Equipment	412	60	50
Reagents	17	20	30
Others	722	60	80
Subtotal	3,249	180	200
unit: thousan	d		<i>JТКАО</i> 29

Lab nonrevenue cost center apportionment

		Chem	Hema	Micro	BB	Sero
Revenue center direct costs		3,468	1,746	2,995	13,987	4,116
Nonrevenue ce direct costs	enter					
Lab admin	3,249	428	215	370	1727	508
SCC	180	24	12	20	96	28
Information desk	200	26	13	23	106	31
Total apportioned direct costs		3,946	5,932	3,408	15,916	4,683
unit: thousa	Ind					JTKAO 30

Allocation of indirect costs

			Chem	Hema	Micro	BB	Sero
Building depreciation	107	M ²	21	34	18	21	13
Personnel dept.	101	Personnel	20	32	17	20	12
Purchasing	92	% purchases	18	30	16	18	10
Administration	650	% direct cost	76	114	65	305	90
Total indirect cost			135	210	116	364	125
Total direct cost			3,946	5,932	3,408	15,916	4,683
Total			4,081	6,142	3,524	16,280	4,804
allocated cost		unit: thous	and				31 <i>JTKAO</i>

Historical method setting test price by CAP workload units

Historical method

Total annual costs (AC) in department =

annual direct costs + annual indirect costs

Annual CAP workload units (W) in department

Cost per workload unit (CP) = AC / W

Cost per test (CT) = CP x CAP workload unit

Price per test = CT x (1 + profit)

Historical method

Easy
Less time consuming
More general

JTKAO

34

Break-even analysis

Cost

 Variable cost
 (變動費用)
 Reagent and supplies
 Direct labor Fixed cost

 (固定費用)
 Allocated indirect
 Equipment
 depreciation and
 maintenance

Difficult to classify definitively
Break - even point

That point at which the numbers of tests performed produced total revenues equal to total costs (fixed costs and variable costs).

	Number of tests		
	50	100	150
Total cost			
Variable cost (\$6.0)	300	600	900
Fixed cost	10,000	10,000	10,000
Total cost	10,300	10,600	10,900
Unit cost			
Variable cost per uni	it 6	6	6
Fixed cost per unit	200	100	66.7
Total cost per unit	206	106	72.7

Break - even point

rx = vx + f + cf + c $x = \frac{f + c}{r - v}$

x = the break-even point (number of tests)

- r = revenue per unit
- v = variable cost per unit
- f = total fixed cost
- **c** = net income contribution

If fixed cost is \$10,000 and unit variable cost is \$6. Setting the unit revenue at \$10 and c at zero, then what is the break-even point?

 $\mathbf{rx} = \mathbf{vx} + \mathbf{f} + \mathbf{c}$

 $x = \frac{f+c}{r-v} = \frac{10,000+0}{10-6} = 2,500$

Thus, 2500 tests must be performed in order to break even.

Component	Current	Volume (†20%)
Volume	125	150
Total revenue @ \$10	\$ 1,250	\$ 1,500
Variable cost @ \$6	\$ 750	\$ 900
Fixed cost	\$ 500	\$ 500
Net income	\$ 0	\$ 100

(\$ 900 + \$ 500) / 150 = \$ 9.33

JTKAO

Component	Current	Labor (↓20%)
Volume	125	125
Total revenue @ \$10	\$ 1,250	\$ 1,250
Variable cost	\$750 @\$6	\$600 @\$4.8
Fixed cost	\$ 500	\$ 500
Net income	\$ 0	\$ 150

Component	current	Revenue (†20%)
Volume	125	125
Total revenue	\$ 1,250 @ \$10	\$ 1,500 @ \$12
Variable cost @ \$6	\$ 750	\$ 750
Fixed cost	\$ 500	\$ 500
Net income	\$ 0	\$ 250

Break – even analysis

- To demonstrate the economic batch size
- To determine frequency of testing
- To determine the test volume required to justify the purchase of automated equipment
- To establish the number of tests needed to perform a procedure

Billable test: Total number of tests billed to patients or third party **Non-billable activity:** quality control, calibration, repeats, duplicates, primes and proficiency testing.

Cost per billable test

This is proportional to cost per test.
 This is dependent on equipment design and use.

Thank you for your attention

Management of Information

JTKAO

Syllabus

- Definition
- Rules and needs for record keeping
- Method
- Stages in data processing
- System development
- Laboratory Information Management System
- Hospital Information System
- System acquisition
- Implementation
- Evaluation

Data

Factual information used as a basis for reasoning, discussion or calculation.

Record

A group of related data necessary for performing a given function.

JTKA0

Information

A systematic record of data organized to convey meaning, communication, or reception of knowledge.

Data J Record J Information

JTKAO

Rules for systematic record keeping

- Each item of information must be recorded in a reserved space.
- Each item of information must be recorded in a specific way.

Needs to process data

 Limitations in the capacity of the human mind
 Requirement for written evidence

JTKA0

Management information system

Manual
 Partially automated
 Fully computerized

JTKAO

History of clinical laboratory computerization

- Late 1950s workload and associated clerical tasks
- > 1960s to automate these tasks: paper tape, punched cards, magnetic tape
- > 1970s microprocessors fully functional, user-oriented computer systems
- > 1980s HIS and LIS interactive ability

Requirements of methods of recording information

Concise

- Consistent
- **Comprehensive**
- Convenient

Stages in data processing

Origination
Input
Processing
Output
Storage

JTKAO

Advantages of laboratory information management system

 Faster report and retrieval of patient test results
 Easing of laboratory workload
 Better management

Faster report and retrieval of patient test results

- >Through speed of reporting
- By use of patient cumulative reports
- Through faster retrieval

Easing of laboratory workload

- Through generation of specimen labels
- Through automatic calculations of results
- Through elimination of transcription activities
- By making an inventory of pending workload
- Through generation of laboratory worksheet
- By faster reporting, causing a decrease in telephone inquiries

Better management

Through quality control results

>Through workload statistics

System development

System analysis
System design
System acquisition
Implementation
Evaluation

System analysis

Initiation
Survey

JTKAO

Testing process

- > Order entry and order communication
- Phlebotomy service
- Receipt of specimens
- Analysis of specimens
- Quality control and results verification
- Interpretative functions
- Results reporting
- Statistics and quality assurance functions
- Billing

System design

Preliminary designDetailed design

JTKAO

Laboratory information management system

Input subsystem
 Processing subsystem
 Output subsystem
 Control subsystem

Input subsystem

- Record patient demographic data
- Record test requests
- Prepare collection schedule and container labels
- Prepare log of specimens received

Processing subsystem

- Prepare working lists and logs
- Prepare specimens for analysis
- Perform analysis and calculate result
- Enter results on working list
- Evaluate quality control results
- Autoverification of patient results (e.g. limit checks, delta checks)
- Reflex testing

Output subsystem

- Prepare report to patient chart
- Report critical (panic) values
- Transmit report to nursing station
- Prepare billing information
- Prepare work load reports
- Prepare reports to laboratory archives
Control subsystem

- Review quality control records
- Perform periodic inspection of inventory
- Review workload data; initiate requests for staffing or new equipment or revised operation
- Review requests for new services
- Monitor budgets and take corrective action
- Complete traceability in a manner compliant with the US Food and Drug Administration Regulation 21 CFR Part 11

Hospital Information System

Laboratory subsystem Pharmacy subsystem Registration subsystem Billing subsystem Catering subsystem In-patient subsystem Emergency subsystem

System acquisition

In-house production system
 Ready-made system
 Development

Implementation

Installation
Testing
Training
Backup system

Evaluation

ComparisonModification

Considerations in Purchasing a LIMS

Speed

Response time between screen < 3 s

Reliability

Real-time backup capability No need for redundant processors

Downtime only for planned maintenance

Connectivity

Total independence of peripherals and cabling from LIS server HL-7 interfaces to hospital information system Accessibility to laboratory clients Attachment of instrument with ASTM standards

> Adaptability

Database systems that support real-time decisions

JTKAO

Francis K: CLN 2001; 11:12

Paperless

Thank you for your attention